Asymmetric Addition of Diethylzinc to Aldehydes Catalyzed by Chiral γ-Amino Alcohols

Qian Yong XU, Tong Xing WU, Xin Fu PAN*
Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract

New chiral γ-amino alcohols 1-4 were synthesized and applied in the asymmetric addition of diethylzinc to aldehydes to give sec-alcohol with up to 94.0% enantiomeric excess.

Keywords: Asymmetric addition, γ-amino alcohols, diethylzinc.

Although the asymmetric additions of diethylzinc to aldehydes have been extensively studied in the presence of chiral catalyst, most of the chiral ligands tested are β-amino alcohols ${ }^{1}$. In this report, the synthesis of chiral γ-amino alcohols 1-4 from the reaction of (+)-camphor and (-)-menthone with 2-lithiomethyl-6-methyl-pyridine or 2-picollylithium ${ }^{2}$, which give a single diasteromer as determined by ${ }^{1} \mathrm{H}$ NMR with high yields (Scheme 1) ${ }^{3}$, and their application in the enantioselective addition of diethylzinc to aldehydes are described (Table 1).

Scheme 1

1
3

2
4

Reagents and conditions: i. (+)-Camphor, ether; $0^{\circ} \mathrm{C}$, ii. (-)-Menthone, ether, $0^{\circ} \mathrm{C}$.
The results show that ligand $\mathbf{4}$ is the best catalyst when the enantioselective addition of diethylzinc to benzaldehdye was carried out in toluene/hexane (v:v, $1: 1$) at $0^{\circ} \mathrm{C}$ by using $20 \mathrm{~mol} \%$ of catalyst (entry 4). For ligands $\mathbf{1}$ and $\mathbf{3},(R)$-1-phenyl-propanol was produced (entries 1 and 3). While for ligands 2 and 4, (S)-1-phenyl-propanol was obtained (entries 2 and 4). The ligand 4 was further examined in the enantioselective addition of diethylzinc to various aldehydes. For aromatic aldehdyes, moderate to good

[^0]enantioselectivities (76.5-94.0\%) were observed with high yields (entries 5-11). However, for aliphatic aldehydes, the enantioselectivities were moderate with good yields (entries 12-15).

Table 1 Enantioselective addition of diethylzinc to aldehydes catalyzed by ligand $1-\mathbf{4}^{\text {a }}$

Entry	Substrate	Ligand	Yield (\%) ${ }^{\text {b }}$	ee (\%) (Config.) ${ }^{\text {c }}$
1	Benzaldehyde	1	91	74.8 (R)
2	Benzaldehyde	2	86	68.8 (S)
3	Benzaldehyde	3	93	38.1 (R)
4	Benzaldehyde	4	94	92.3 (S)
5	o-Anisaldehyde	4	92	84.1 (S)
6	p-Aanisaldehyde	4	90	89.7 (S)
7	p-Tolualdehyde	4	91	88.6 (S)
8	o-Chlorobenzaldehyde	4	82	83.2 (S)
9	p-Chlorobenzaldehyde	4	87	88.4 (S)
10	3,4-Dimethoxybenzaldehyde	4	97	88.7 (S) ${ }^{\text {d }}$
11	4-(Dimethylamino)benzaldehyde	4	98	76.5 (S) ${ }^{\text {d }}$
12	1-Naphthaldehyde	4	92	94.0 (S) ${ }^{\text {d }}$
11	2-Naphthaldehyde	4	90	$82.7(S)^{\text {d }}$
12	trans-Cinnamaldehyde	4	87	76.3 (S) ${ }^{\text {d }}$
13	Dodecylaldehyde	4	83	$59.6(S)^{\text {e }}$
14	Nonylaldehyde	4	86	$54.2(S)^{\text {e }}$
15	Cyclohexanecarboxaldehyde	4	80	$61.3(S)^{\text {e }}$

a) Ligand/aldehyde/ $\mathrm{Et}_{2} \mathrm{Zn}=1.0 / 5.0 / 10.0$ (mmol); b) Based on isolated product; c) Except as note, the e.e. values were determined by GC with Chrompack CP-Chirasil-DEX CB capillary column and the configurations were determined by comparison the sign of the specific rotation with the known compounds; d) Determined by HPLC with a ChiralcelOD column from Daicel; e) Determined by GC with Chrompack CP-Chirasil-DEX CB capillary column after acetylation.

Acknowledgment

The authors acknowledge Hong Kong Polytechnic University for the financial support.

References and notes

R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994, p.255-297.
2. a) B. Koning, A. Meetsam, R. M. Kellogg, J. Org. Chem., 1998, 63, 5533;
b) O. F. Beumel, Jr. W. N. Smith, B. Rybalka, Synthesis, 1974, 43.
3. Selected spectra for compound 4: mp $73-74^{\circ} \mathrm{C} ; \quad[\alpha]_{D}^{20}=-62.9\left(\mathrm{c} 1.03, \mathrm{CHCl}_{3}\right) ; \quad \mathrm{IR}(\mathrm{KBr}$, $\left.\mathrm{cm}^{-1}\right): 3324-3366,1566,1520 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 0.72\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.95$ $\left(\mathrm{d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.01\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.05-1.13\left(\mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{H}_{\mathrm{ax}}\right), 1.15-1.21(\mathrm{~m}$, $\left.1 \mathrm{H}, 6-\mathrm{H}_{\mathrm{ax}}\right), 1.26-1.41\left(\mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{H}_{\mathrm{eq}}\right), 1.48-1.65\left(\mathrm{~m}, 3 \mathrm{H}, 2-\mathrm{H}_{\mathrm{ax}}, 3-\mathrm{H}_{\mathrm{eq}}, 6-\mathrm{H}_{\mathrm{eq}}\right), 1.72-1.77(\mathrm{~m}$, $2 \mathrm{H}, 3-\mathrm{H}_{\mathrm{ax}}, 5-\mathrm{H}_{\mathrm{ax}}$), 2.26-2.29 (m, 1H, CHMe 2), $2.53\left(\mathrm{~d}, 1 \mathrm{H}, J=13.8 \mathrm{~Hz}, \mathrm{PyCH}_{2}\right), 3.43(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=13.8 \mathrm{~Hz}, \mathrm{PyCH}_{2}\right), 4.91(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 7.14-7.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PyH}^{3}, \mathrm{PyH}^{5}\right), 7.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PyH}^{4}\right)$, $8.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PyH}^{6}\right)$.

Received 23 April, 2001

[^0]: * E-mail: panxf@lzu.edu.cn

