Asymmetric Addition of Diethylzinc to Aldehydes Catalyzed by Chiral **g**-Amino Alcohols

Qian Yong XU, Tong Xing WU, Xin Fu PAN*

Department of Chemistry, National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000

Abstract: New chiral γ -amino alcohols 1-4 were synthesized and applied in the asymmetric addition of diethylzinc to aldehydes to give *sec*-alcohol with up to 94.0% enantiomeric excess.

Keywords: Asymmetric addition, *γ*-amino alcohols, diethylzinc.

Although the asymmetric additions of diethylzinc to aldehydes have been extensively studied in the presence of chiral catalyst, most of the chiral ligands tested are β -amino alcohols¹. In this report, the synthesis of chiral γ -amino alcohols **1**-**4** from the reaction of (+)-camphor and (-)-menthone with 2-lithiomethyl-6-methyl-pyridine or 2-picolly-lithium², which give a single diasteromer as determined by ¹H NMR with high yields (**Scheme 1**)³, and their application in the enantioselective addition of diethylzinc to aldehydes are described (**Table 1**).

Scheme 1

Reagents and conditions: i. (+)-Camphor, ether; 0°C, ii. (-)-Menthone, ether, 0°C.

The results show that ligand **4** is the best catalyst when the enantioselective addition of diethylzinc to benzaldehdye was carried out in toluene/hexane (v:v, 1:1) at 0°C by using 20 mol% of catalyst (entry 4). For ligands **1** and **3**, (*R*)-1-phenyl-propanol was produced (entries 1 and 3). While for ligands **2** and **4**, (*S*)-1-phenyl-propanol was obtained (entries 2 and 4). The ligand **4** was further examined in the enantioselective addition of diethylzinc to various aldehydes. For aromatic aldehdyes, moderate to good

^{*} E-mail: panxf@lzu.edu.cn

Qian Yong XU et al.

enantioselectivities (76.5-94.0%) were observed with high yields (entries 5-11). However, for aliphatic aldehydes, the enantioselectivities were moderate with good yields (entries 12-15).

Table 1 Enantioselective addition of diethylzinc to aldehydes catalyzed by ligand 1-4^a

Entry	Substrate	Ligand	Yield (%) ^b	ee (%) (Config.) ^c
1	Benzaldehyde	1	91	74.8 (R)
2	Benzaldehyde	2	86	68.8 (<i>S</i>)
3	Benzaldehyde	3	93	38.1 (<i>R</i>)
4	Benzaldehyde	4	94	92.3 (S)
5	o-Anisaldehyde	4	92	84.1 (S)
6	p-Aanisaldehyde	4	90	89.7 (S)
7	<i>p</i> -Tolualdehyde	4	91	88.6 (<i>S</i>)
8	o-Chlorobenzaldehyde	4	82	83.2 (<i>S</i>)
9	<i>p</i> -Chlorobenzaldehyde	4	87	88.4 (S)
10	3,4-Dimethoxybenzaldehyde	4	97	$88.7(S)^{d}$
11	4-(Dimethylamino)benzaldehyde	4	98	$76.5(S)^{d}$
12	1-Naphthaldehyde	4	92	94.0 $(S)^{d}$
11	2-Naphthaldehyde	4	90	$82.7(S)^{d}$
12	trans-Cinnamaldehyde	4	87	$76.3(S)^{d}$
13	Dodecylaldehyde	4	83	$59.6(S)^{e}$
14	Nonylaldehyde	4	86	$54.2(S)^{e}$
15	Cyclohexanecarboxaldehyde	4	80	$61.3(S)^{e}$

 $\begin{array}{c} 0 \\ \downarrow \\ R \\ H \end{array} + B \\ 2 \overline{Zn} \\ T \\ 0 \\ | u e n e / H e x a n e \end{array} \xrightarrow{\begin{subarray}{c} 0 \\ H \\ R \\ R \\ \hline \end{subarray}} R \\ R \\ \hline \end{subarray}$

a) Ligand/aldehyde/Et₂Zn = 1.0/5.0/10.0 (mmol); b) Based on isolated product; c) Except as note, the e.e. values were determined by GC with Chrompack CP-Chirasil-DEX CB capillary column and the configurations were determined by comparison the sign of the specific rotation with the known compounds; d) Determined by HPLC with a Chiralcel-OD column from Daicel; e) Determined by GC with Chrompack CP-Chirasil-DEX CB capillary column after acetylation.

Acknowledgment

The authors acknowledge Hong Kong Polytechnic University for the financial support.

References and notes

- 1. R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994, p.255-297.
- 2. a) B. Koning, A. Meetsam, R. M. Kellogg, J. Org. Chem., 1998, 63, 5533;
- b) O. F. Beumel, Jr. W. N. Smith, B. Rybalka, Synthesis, **1974**, 43.
- 3. Selected spectra for compound **4**: mp 73-74°C; $[\alpha]_D^{20} = -62.9$ (c 1.03, CHCl₃); IR (KBr, cm⁻¹): 3324-3366, 1566, 1520; ¹H NMR (CDCl₃, δ ppm): 0.72 (d, 3H, *J*=6.3 Hz, CH₃), 0.95 (d, 3H, *J*=6.8 Hz, CH₃), 1.01 (d, 3H, *J*=6.8 Hz, CH₃), 1.05-1.13 (m, 1H, 4H_{ax}), 1.15-1.21 (m, 1H, 6H_{ax}), 1.26-1.41 (m, 1H, 4H_{eq}), 1.48-1.65 (m, 3H, 2H_{ax}, 3-H_{eq}, 6-H_{eq}), 1.72-1.77 (m, 2H, 3-H_{ax}, 5-H_{ax}), 2.26-2.29 (m, 1H, CHMe₂), 2.53 (d, 1H, *J*=13.8 Hz, PyCH₂), 3.43 (d, 1H, *J*=13.8 Hz, PyCH₂), 4.91 (br, 1H, OH), 7.14-7.27 (m, 2H, PyH³, PyH⁵), 7.63 (m, 1H, PyH⁴), 8.50 (m, 1H, PyH⁶).

Received 23 April, 2001